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STRATEGIC BEHAVIOR WITHOUT OUTSIDE OPTIONS

CAMILO J. SIRGUIADO AND JUAN PABLO TORRES-MARTÍNEZ

Abstract. In two-sided one-to-one matching markets, each side of the market has a single stable

mechanism that is strategy-proof for its members (Alcalde and Barberà, 1994). When agents

may not declare potential partners inadmissible, this uniqueness result only holds for the short

side, if there is one. Furthermore, among the stable mechanisms that are strategy-proof for the

long side of the market, there is one that is less manipulable by coalitions of its members than the

long-side optimal deferred acceptance mechanism. These properties can be extended to scenarios

in which a part of the population has outside options.
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1. Introduction

Matching theory has established itself as an active field of research, thanks to its successful

applicability to the design of school choice mechanisms, college admission systems, object allocation

rules, and kidney exchange platforms.1 One area of interest within this field has been the study

and characterization of strategy-proof mechanisms, that is, centralized protocols that induce agents

to truthfully report their preferences independently of the actions of others. Strategy-proofness

simplifies the interpretation of reported information, and promotes equity by not giving an advantage

to more sophisticated agents.2 Under a strategy-proof mechanism, policymakers should expect social

goals to be achieved even when preferences are not observable.

It is well-known that designing strategy-proof mechanisms with good stability or efficiency

properties may be impossible. In two-sided one-to-one matching markets, Roth (1982) shows that

no stable mechanism is strategy-proof, while Alcalde and Barberà (1994) establish that no Pareto
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efficient and individually rational mechanism is strategy-proof. However, stability and one-sided

strategy-proofness are compatible: the deferred acceptance mechanism (Gale and Shapley, 1962)

implements the best stable matching for those who make proposals and is strategy-proof for them

(cf., Dubins and Freedman, 1981; Roth, 1982). Consequently, this mechanism is a good alternative

when a policymaker is concerned about the welfare and incentives of the same side of the market.

Nevertheless, there are situations in which one might want to maximize the welfare of one side of the

market without incentivizing the other side to misreport preferences. For example, the matching

between courses and instructors at a college, or the assignment of tasks to employees of a company.

In any of these scenarios, the institution may want to implement a stable mechanism that both

maximizes its welfare (i.e., the welfare of the side of the market representing courses/tasks) and

incentivizes instructors/employees to honestly report their preferences.

Unfortunately, when potential partners can be declared inadmissible, the only way to incentivize

one side of the market to truthfully report preferences is to minimize the welfare of the other side.

Indeed, Alcalde and Barberá (1994, Theorem 3) show that deferred acceptance is the only stable

mechanism that is strategy-proof for those who make proposals. Since the best stable matching for

one side of the market is the worst for the other (Knuth, 1976), deferred acceptance minimizes the

welfare of those who receive proposals. Underlying Alcalde and Barberà’s uniqueness result is the

fact that, when a stable mechanism other than deferred acceptance is implemented, each agent on

the side of the market that makes proposals can get the best stable partner by simply declaring the

mate under deferred acceptance as the only acceptable one.3 However, when no one may declare

others inadmissible, these manipulation strategies cannot be used, and it is natural to ask whether

the uniqueness result still holds.4

We study strategic behavior when agents have no outside options and the mechanism designer

knows it. Under this information requirement, the lack of outside options—a characteristic of

preferences—can be associated with the inability to misrepresent preferences by declaring potential

partners unacceptable. Focusing on two-sided one-to-one matching markets, we show that:

• In balanced matching markets, for each side of the market there are many stable mechanisms

that are strategy-proof for its members.5

• In unbalanced matching markets, only the long side of the market has more than one stable

mechanism that is strategy-proof for its members.

• Among the stable mechanisms that are strategy-proof for the long side of the market, there is

one that is less manipulable by coalitions of its members than the long-side optimal deferred

acceptance mechanism.

3The Rural Hospital Theorem (Gale and Sotomayor, 1985) ensures the success of this manipulation strategy, since

it implies that those who form a pair when deferred acceptance is implemented will remain paired with someone under

any other stable outcome. Therefore, regardless of the stable mechanism that is implemented, agents who declare

their mate under deferred acceptance as the only acceptable one are not left alone.
4When agents may not declare potential partners inadmissible, Roth’s (1982, Theorem 3) impossibility theorem

holds unless one side of the market has only two agents (see Remark 2). Furthermore, since individual rationality is

trivially satisfied in this context, the impossibility result of Alcalde and Barberà (1994, Proposition 1) never holds:

the serial dictatorship algorithm is Pareto efficient, individually rational, and strategy-proof (cf., Svensson, 1999).
5A matching market is balanced when there is an equal number of agents on each side.
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These results show how the ability to manipulate a stable mechanism decreases in the absence

of outside options. The first two properties fully characterize the scenarios in which Alcalde and

Barberà’s uniqueness result hold when no one may declare others unacceptable (see Proposition 1).

The third property ensures that it is possible to improve the welfare of short-side agents and reduce

the manipulability of long-side coalitions without compromising stability (see Proposition 2).

In unbalanced markets, to prove that there is more than one stable and strategy-proof mechanism

for the long side of the market, we describe a family of centralized protocols that combine the

two versions of deferred acceptance (those obtained by choosing one side of the market to make

proposals). Essentially, we find a subdomain of preferences in which the impossibility of declaring

others unacceptable prevents agents on the long side of the market from manipulating the outcome

of deferred acceptance when the short side makes the proposals. Thus, we construct a mechanism

that is strategy-proof for the long side of the market by associating the short-side optimal stable

matching in that subdomain and the long-side optimal stable matching otherwise (see the proof of

Proposition 1). For balanced matching markets, a similar strategy allow us to prove that each side

of the market has many stable mechanisms that are strategy-proof for its members.

To ensure that there is a single stable mechanism that is strategy-proof for the short side of an

unbalanced market, we appeal to the Rural Hospital Theorem (Gale and Sotomayor, 1985). Given

a preference profile, this result guarantees that there is an agent on the long side who is left alone

in all stable matchings. Thus, when a stable mechanism other than the short-side optimal deferred

acceptance mechanism is implemented, there are preference profiles at which some agents on the

short side can benefit from declaring as first-rated alternatives their best stable partner and someone

who is left alone in any stable matchings, in this order (see the proof of Proposition 1).

We also characterize a stable mechanism that improves the welfare of the short side of the market

without incentivizing the long side to misreport preferences: match each agent on the short side of

the market with his best potential partner; when it is not possible, implement the long-side optimal

stable matching. We show that this mechanism is also less manipulable by coalitions of the long

side of the market than the long-side optimal deferred acceptance mechanism (see Proposition 2).

It is important to note that—regardless of the existence of outside options—our results remain

valid when the mechanism designer only knows that everyone considers all potential partners

admissible. Indeed, this ensures that an agent may not misrepresent preferences by declaring a

potential partner unacceptable, which is the main assumption underlying our findings.6

Our analysis can be extended to allow a number of agents to have outside options that they

consider better than some potential partners (see Theorems 1, 2, and 3). Among other properties,

in this more general framework we show that:

• In balanced markets, Alcalde and Barberà’s uniqueness result holds for one side of the

market if and only if at most one agent on that side may not declare inadmissibilities.

Moreover, the same property holds for the long side in an unbalanced market.

6It might be thought that it is sufficient to force agents (implicitly or explicitly) to report all potential partners as

admissible. For instance, this happens in school choice systems in which, to prevent anyone from being excluded, it

is assumed that all students find neighborhood schools acceptable (cf., Teo, Sethuraman, and Tan, 2001). However,

when agents may not be able to report their true preferences, studying strategy-proofness does not make sense.
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• If all agents on one side of the market have outside options, then there is more than one

stable mechanism that is strategy-proof for the other side if and only if at least two of its

members may not declare their potential partners as unacceptable.

• If at least two agents on the long side of the market may not declare their potential partners

as unacceptable, then there is a stable mechanism that is strategy-proof for the long side of

the market and is less manipulable by coalitions of its members than the long-side optimal

deferred acceptance mechanism.

Furthermore, among the stable mechanisms that are strategy-proof for one side of the market,

there is always one that is Pareto-superior for the other side (see Theorem 4). In many situations,

this optimal mechanism does not implement any of the outcomes of deferred acceptance.

To contextualize our results, consider a company that wants to assign tasks to a group of

employees taking into account their preferences. Suppose that for each task there is a team leader

who ranks workers according to their ability to perform it; and at least two employees evaluate all

chores as acceptable. In this context, when there are as many employees as tasks or some employees

can be considered unsuitable for some duties, our results ensure that there is a stable mechanism

that improves the welfare of the company in relation to the employee-optimal stable mechanism and

is still strategy-proof for the workers. Furthermore, this mechanism can be chosen in such a way

that the efficiency of task allocation cannot be improved—from the company’s perspective—without

incentivizing employees to lie about their preferences.

Related literature. To the best of our knowledge, there are no studies that examine the validity

of the uniqueness result of Alcalde and Barberá (1994) in contexts where agents may not declare

potential partners as unacceptable. Teo, Sethuraman, and Tan (2001) highlight how discarding the

strategic option of remaining single may significantly affects the ability of some agents to manipulate

a stable mechanism. For balanced marriage markets, they show that the inability to declare potential

partners unacceptable prevents a woman from reaching her best stable partner by manipulating the

men-optimal deferred acceptance mechanism. Notice that, this never happens when women are the

short side of the market, because any man who is left alone in a stable matching can be used to

reach the best stable partner (see the proof of our Proposition 1).

For school choice problems in which institutions and students may not declare potential partners

unacceptable, the results of Kesten (2010, Proposition 1) and Kesten and Kurino (2019, Corollary 3)

characterize the existence of mechanisms that, from the perspective of students, are strategy-proof

and Pareto dominate the student-optimal deferred acceptance mechanism.7 They show that this

type of mechanism exists if and only if the school system has more students than vacancies. We

complement this property, as our Proposition 1 and Theorem 4 imply that there is a (stable)

mechanism that Pareto dominates the student-optimal deferred acceptance mechanism from the

perspective of schools, and remains strategy-proof for students, if and only if there are as many

students as vacancies in the schools system (see Section 5).

7From the perspective of students, when schools may be declared unacceptable, no strategy-proof mechanism

Pareto dominates the student-optimal deferred acceptance mechanism (see Abdulkadiroglu, Pathak, and Roth, 2009;

Erdil, 2014).
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The rest of the paper is organized as follows. Section 2 describes our framework. Sections 3 and 4

analyze the validity of Alcalde and Barberá (1994, Theorem 3) when (some) agents may not report

inadmissibilities. Section 5 shows that each side of the market has an optimal stable mechanism

among those that are strategy-proof for the other side. Remarks on topics for future research are

included in Section 6. Some proofs are left to the Appendix.

2. Model

We study matching markets in which the mechanism designer knows that agents have no outside

options. Hence, no one may misrepresent preferences by declaring potential partners as inadmissible.

Let [M,W, (≻i)i∈M∪W ] be a two-sided one-to-one matching market in which the population is

divided into two finite sets, M and W , with at least two agents each. Given H ∈ {M,W}, each
agent h ∈ H has a complete, transitive, and strict preference ≻h defined on Hc, where M c ≡ W and

W c ≡ M . Let P be the set of preference profiles ≻= (≻i)i∈M∪W satisfying the conditions above.

A matching is a function µ : M ∪W → M ∪W determining a partner for each agent in M ∪W .

That is, µ(h) ∈ Hc ∪ {h} and µ(µ(h)) = h for each H ∈ {M,W} and h ∈ H. Let M be the set of

matchings between M and W . A matching µ is stable when no pair of agents can block it, in the

sense that there is no pair (m,w) ∈ M ×W such that w ≻m µ(m) and m ≻w µ(w). Since there are

no outside options, no one is interested in blocking a matching to be alone.

A mechanism is a centralized protocol that associates a matching to each preference profile. Given

a mechanism Ω : P → M and a side of the market H ∈ {M,W}, consider the following properties:

• Ω is stable when for each ≻∈ P the matching Ω[≻] is stable in [M,W,≻].

• Ω is strategy-proof for H when for any preference profiles ≻,≻′∈ P there is no agent h ∈ H

such that Ω[≻′
h,≻−h](h) ≻h Ω[≻](h), where ≻−h= (≻i)i̸=h.

8

• Ω is manipulable by a coalition C ⊆ H at a preference profile ≻∈ P when there exists ≻̃ ∈ P
such that the following conditions hold:

– Each agent h ∈ C considers Ω[≻̃C ,≻−C ](h) at least as preferred as Ω[≻](h),

– For some h ∈ C, Ω[≻̃C ,≻−C ](h) ≻h Ω[≻](h),

where ≻̃C = (≻̃h)h∈C and ≻−C= (≻h)h/∈C .

• Ω is less manipulable by H-coalitions than Ω̃ : P → M as long as:

- For each C ⊆ H and ≻∈ P, if Ω is manipulable by C at ≻, then Ω̃ is too.

- There are C ⊆ H and ≻∈ P such that, Ω̃ is manipulable by C at ≻ and Ω is not.

• Ω is group strategy-proof for H when it is not manipulable by any coalition of agents in H.

Let DAH : P → M be the stable mechanism that associates to each preference profile in P the

outcome of the deferred acceptance algorithm when agents in H ∈ {M,W} make proposals. Some

classic properties of DAH will be key to prove our main results:

• DAH [≻] is the best stable matching of [M,W,≻] for agents in H (Gale and Shapley, 1962).

• DAH : P → M is strategy-proof for H (Dubins and Freedman, 1981; Roth, 1982).

8Therefore, Ω is strategy-proof for H when truth-telling is a dominant strategy for agents in H in the game in

which every i ∈ M ∪W reports preferences ≻i and Ω[(≻i)i∈M∪W ] is implemented.
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We will also appeal to the Rural Hospital Theorem (Gale and Sotomayor, 1985): those who are

single in a stable matching of [M,W,≻] remain single in any other stable outcome.

Assuming that agents have the ability to declare potential partners as unacceptable, Alcalde and

Barberà (1994, Theorem 3) guarantee that DAH is the only stable mechanism that is strategy-proof

for the members of H ∈ {M,W}. We will show that this result may not hold in contexts in which

the mechanism designer knows that no one has outside options.

3. One-sided strategy-proofness and stability

In this section, we prove that in a two-sided one-to-one matching market in which the mechanism

designer knows that agents have no outside options, Alcalde and Barberà’s uniqueness result only

holds for the short side of the market, if there is one.

Notice that, if an agent m ∈ M may not declare potential partners as inadmissible, he loses

the ability to manipulate a stable mechanism other than DAM by simply declaring DAM [≻](m) as

the only acceptable partner. This manipulation strategy is a key ingredient in the classic proof of

Alcalde and Barberà’s uniqueness result. Therefore, the assumption that the mechanism designer

knows that there are no outside options may compromise the validity of this result.

However, when M is the short side of the market, it is possible to show that DAM remains the

only stable mechanism that is strategy-proof for M . More precisely, if |M | < |W |, then for each

preference profile ≻∈ P there exists an agent w∗ ∈ W that stays alone in all stable matchings

of [M,W,≻]. Hence, when a stable mechanism other than DAM is implemented, each m ∈ M

can report DAM [≻](m) and w∗ as the best alternatives, in this order. This manipulation strategy

ensures that DAM [≻] remains stable under the new preferences and, as a consequence of the Rural

Hospital Theorem, w∗ stands alone. In addition, m never forms a stable pair with someone less

preferred to w∗, because w∗ always considers him acceptable. Hence, by misrepresenting preferences

in this way, mmanage to pair with DAM [≻](m)—the best partner he would get in a stable matching.

Therefore, no stable mechanism other than DAM is strategy-proof for M .

Nevertheless, when M is the long side of the market, the scarcity of potential partners in W

will allow the existence of many stable mechanisms defined on P that are strategy-proof for M .

Essentially, we will manage to obtain a family of mechanisms with these properties by properly

combining DAM and DAW . To gain some intuition about this claim, consider a preference profile

in which agents in W have different best potential partners. In this scenario, agents in W do

not compete when the DAW is implemented, and the inability of agents in M to declare others

unacceptable makes it impossible for them to improve through misrepresenting preferences (cf.,

Teo, Sethuraman, and Tan, 2001). The next result formalizes the ideas described above.

Proposition 1. In a two-sided one-to-one matching market between M and W , there is more than

one stable mechanism defined in P that is strategy-proof for M if and only if |M | ≥ |W |.

Proof. (⇐=) Suppose that |M | ≥ |W |. Let F∗ be the non-empty set of injective maps f : W → M .

For each F ⊆ F∗, let PF = {≻∈ P : ∃f ∈ F , bw(≻) = f(w), ∀w ∈ W}, where bw(≻) is the best
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potential partner of w under ≻. That is, PF are the preference profiles in which the best potential

partners of agents in W are determined by a function in F . In particular, bw(≻) ̸= bw′(≻) for all

w,w′ ∈ W and ≻∈ PF . Consider the stable mechanism ΩF : P → M characterized by

ΩF [≻] =

{
DAW [≻], when ≻ ∈ PF ,

DAM [≻], when ≻ ∈ P \ PF .

We claim that ΩF is strategy-proof for M . By contradiction, suppose that there is m ∈ M

such that ΩF [≻′
m,≻−m](m) ≻m ΩF [≻](m) for some ≻,≻′∈ P. Notice that, ≻∈ PF if and only

if (≻′
m,≻−m) ∈ PF . If ≻ and (≻′

m,≻−m) belong to PF , as no one in M has an outside option,

it follows that ΩF [≻′
m,≻−m] = DAW [≻′

m,≻−m] = DAW [≻] = ΩF [≻], a contradiction. Since

DAM is strategy-proof for M , if both ≻ and (≻′
m,≻−m) belong to P \ PF , then we have that

ΩF [≻](m) = DAM [≻](m) ⪰m DAM [≻′
m,≻−m](m) = ΩF [≻′

m,≻−m](m), a contradiction.

We claim that ΩF ̸= DAM . Suppose that M = {m1, . . . ,mr} and W = {w1, . . . , ws}, where
r ≥ s ≥ 2. Given a function f ∈ F , let ≻∈ PF be such that (bw(≻))w∈W = (f(w))w∈W and

- For i, j ∈ {1, 2} with i ̸= j, wi is the best potential partner of bwj (≻) ∈ M .

- For i ∈ {3, . . . , s}, agents bwi
(≻) and wi consider each other the best alternative.

- The agents m1, . . . ,ms are the top alternatives for each w ∈ W .

It is not difficult to verify that

DAM [≻] = {(bw1
(≻), w2), (bw2

(≻), w1), (bw3
(≻), w3), . . . , (bws

(≻), ws),ms+1, . . . ,mr},

DAW [≻] = {(bw1(≻), w1), (bw2(≻), w2), (bw3(≻), w3), . . . , (bws(≻), ws),ms+1, . . . ,mr}.

Hence, ΩF [≻] = DAW [≻] ̸= DAM [≻]. Therefore, when |M | ≥ |W | there is more than one stable

mechanism defined in P that is strategy-proof for M .9

(=⇒) Suppose that |M | < |W |. We want to prove that there is a single stable mechanism defined

in P that is strategy-proof for M . By contradiction, assume that there exists Ω : P → M, stable

and strategy-proof for M , satisfying Ω[≻] ̸= DAM [≻] for some ≻∈ P. Since DAM is the M -optimal

stable mechanism (Gale and Shapley, 1962; Theorem 2), it follows that DAM [≻](m) ≻m Ω[≻](m)

for some m ∈ M . In particular, DAM [≻](m) ∈ W . Furthermore, |M | < |W | implies that there

exists w∗ ∈ W such that DAM [≻](w∗) = w∗. Let ≻′
m be a preference profile in which DAM [≻](m)

and w∗ are the best alternatives for m, in this order. Since DAM [≻] is stable under (≻′
m,≻−m), the

Rural Hospital Theorem (Gale and Sotomayor, 1985, Theorem 1) implies that w∗ is alone in every

stable matching of [M,W, (≻′
m,≻−m)]. Hence, Ω[≻′

m,≻−m](m) ≻′
m w∗, because otherwise (m,w∗)

would block the stable matching Ω[≻′
m,≻−m] (remember that m is always acceptable for w∗).10 As

a consequence, Ω[≻′
m,≻−m](m) = DAM [≻](m), which implies that Ω[≻′

m,≻−m](m) ≻m Ω[≻](m).

This contradicts the strategy-proofness of Ω. □

9For each f ∈ F we found ≻∈ PF such that the best potential partners of agents in W are determined by f and

ΩF [≻] ̸= DAM [≻]. Hence, the mechanisms ΩF and ΩF′ are different as long as F ̸= F ′. This implies that there are

at least 2|F| = 2|M|!/(|M|−|W |)! stable mechanisms that are strategy-proof for M .
10This is the only step in the proof of Proposition 1 in which we use that agents in W may not declare their

potential partners unacceptable.
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Assuming that |M | ≥ |W |, let P ′ ⊆ P be the non-empty collection of preference profiles for

which agents in W have different best potential partners.

Proposition 2. In a two-sided one-to-one matching market in which |M | ≥ |W | ≥ 3, the stable

mechanism Ψ : P → M characterized by

Ψ[≻] =

{
DAW [≻], when ≻ ∈ P ′,

DAM [≻], when ≻ ∈ P \ P ′,

is strategy-proof for M and less manipulable by M -coalitions than DAM .

Proof. The arguments made in the proof of Proposition 1 imply that Ψ is strategy-proof for M ,

because it coincides with the mechanism ΩF∗ . Suppose that Ψ is manipulable by a coalition C ⊆ M

at a preference profile ≻∈ P. Hence, there exists ≻̃ ∈ P such that:

- Each agent m ∈ C considers Ψ[≻̃C ,≻−C ](m) at least as preferred as Ψ[≻](m).

- For some m ∈ C we have that Ψ[≻̃C ,≻−C ](m) ≻m Ψ[≻](m).

Notice that ≻∈ P ′ if and only if (≻̃C ,≻−C) ∈ P ′. If ≻∈ P ′, as no agent in M may declare a

potential partner inadmissible, Ψ[≻̃C ,≻−C ](m) = DAW [≻̃C ,≻−C ](m) = DAW [≻](m) = Ψ[≻](m)

for all m ∈ C. This contradicts the fact that C manipulates Ψ at ≻. Hence, ≻∈ P \ P ′ and we

have that Ψ[≻̃C ,≻−C ](m) = DAM [≻̃C ,≻−C ](m) and Ψ[≻](m) = DAM [≻](m) for all m ∈ C, which

imply that DAM is manipulable by C at ≻. Therefore, if the mechanism Ψ is manipulable by a

coalition C ⊆ M at ≻, then DAM is too.

Given that no coalition in M can manipulate Ψ at a preference profile in P ′, to conclude the

proof it is sufficient to find C ⊆ M and ≻∈ P ′ such that DAM is manipulable by C at ≻′. Asume

that M = {m1, . . . ,mr} and W = {w1, . . . , ws}, with r ≥ s ≥ 3. Let ≻∈ P ′ be a preference profile

such that

≻m1
≻m2

≻m3
≻m4

· · · ≻ms
≻ms+1

· · · ≻mr
≻w1

≻w2
≻w3

· · · ≻ws

w2 w1 w1 w4 · · · ws w1 · · · w1 m1 m2 m3 · · · ms

w1 w2 w3

...
...

...
...

...
... m3 m1

...
...

...
...

...
...

...
...

...
...

...
... m2

...
...

...
...

Notice that DAM [≻] = {(m1, w1), (m2, w2), (m3, w3), . . . , (ms, ws),ms+1, . . . ,mr}.
Let C = {m1,m2,m3} and ≻̃ ≡ (≻̃m3

,≻−m3
), where w3 ≻̃m3

w1 ≻̃m3
· · · . Since the matching

DAM [≻̃C ,≻−C ] is given by {(m1, w2), (m2, w1), (m3, w3), . . . , (ms, ws),ms+1, . . . ,mr}, the coalition
C manipulates DAM at ≻. Therefore, Ψ is less manipulable by M -coalitions than DAM . □

In markets without (attractive) outside options in which |M | ≥ |W | ≥ 3, the mechanism Ψ is

a good alternative to DAM : it improves the welfare of the short side of the market, reduces the

incentives of groups of agents on the long side to misreport their preferences, and has the same

computational complexity as DAM .
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When Ψ is implemented instead of DAM , the improvement in the welfare of agents in W at a

preference profile ≻∈ P can be quantified by a utilitarian index that measures the increase in the

average ranking of mates:

∆Ψ[≻] ≡ 1

|W |
∑
w∈W

R≻,w[DAM (w)]− 1

|W |
∑
w∈W

R≻,w[Ψ(w)],

where R≻,w[m] = |{h ∈ M : h ⪰w m}| is the ranking of m in the preferences of w. Alternatively,

we can use a Rawlsian index that measures the increase in the ranking of the worst mate:

ΘΨ[≻] ≡ max
w∈W

R≻,w[DAM (w)]− max
w∈W

R≻,w[Ψ(w)].

Assuming that all preference profiles in P ′ are equiprobable, the following figures describe the

evolution of the expected values of these indices, denoted by E[∆Ψ] and E[ΘΨ].
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Note: E[∆Ψ] and E[ΘΨ] have been approximated by averaging 10,000 realizations of ∆Ψ[≻] and ΘΨ[≻],

where preference profiles were randomly generated by a uniform distribution supported on P′.

It follows that the welfare of the agents in W increases monotonically with the population size

when Ψ is implemented instead of DAM . Ashlagi, Kanoria, and Leshno (2017) show that agents on

the short side of the market are matched with one of their top choices in any stable matching. This

property is what underlies the fact that E[∆Ψ] and E[ΘΨ] take low values when |W | < |M |.
Notice that Ψ is considerably fairer than DAM when |M | = |W |, because the ranking of the worst

partner of agents in W improves significantly when Ψ is implemented instead of DAM .
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4. Extensions

In this section, we discuss the validity of the uniqueness result of Alcalde and Barberà (1994) in

scenarios in which some agents may declare potential partners as unacceptable.

In a two-sided one-to-one matching market between M and W , denote by H⊗ the set of agents

in the side of the market H ∈ {M,W} that always consider all potential partners acceptable. We

assume that the identity of the agents inH⊗ is known by the mechanism designer and, therefore, they

never misrepresent preferences by declaring some potential partners inadmissible. Let Q(M⊗,W⊗)

be the collection of preference profiles (≻i)i∈M∪W such that, given H ∈ {M,W}:

- For each h ∈ H⊗, ≻h is a complete, transitive, and strict preference defined on Hc.

- For each h ∈ H \H⊗, ≻h is a complete, transitive, and strict preference defined on Hc∪{h}.

Notice that, P = Q(M,W ) ⊆ Q(M⊗,W⊗) for all M⊗ ⊆ M and W⊗ ⊆ W . Given a preference

profile ≻∈ Q(M⊗,W⊗), a matching µ ∈ M is stable under ≻ when the following properties hold:

- Individual rationality : there is no i ∈ (M \M⊗) ∪ (W \W⊗) such that i ≻i µ(i).

- There is no (m,w) ∈ M ×W such that w ≻m µ(m) and m ≻w µ(w).

If Q ≡ Q(M⊗,W⊗), denote by SH(Q) the non-empty set of stable mechanisms Ω : Q → M that

are strategy-proof for agents in H ∈ {M,W}. In terms of our notation, when everyone may declare

others unacceptable (M⊗ = W⊗ = ∅), the uniqueness result of Alcalde and Barberà (1994) shows

that |SM (Q)| = |SW (Q)| = 1.

The following result extends Proposition 1 to scenarios in which some agents may misreport

their preferences by appealing to outside options.

Theorem 1. When W⊗ = W and |M⊗| ≥ 2, |SM (Q)| > 1 if and only if |M | ≥ |W |.

Among other properties, the next result determines sufficient conditions for the existence of

many stable mechanisms that are strategy-proof for the short side of the market, a situation that

never arises when no one has outside options. Essentially, if all agents on one side of the market

may declare potential partners as inadmissible, then there are multiple stable mechanisms that

are strategy-proof for the other side if and only if at least two of its members have no outside option.

Theorem 2. When either W⊗ = ∅ or |M | ≥ |W |, |SM (Q)| > 1 if and only if |M⊗| ≥ 2.

To illustrate this result, consider a college that wants to implement a matching between

introductory courses of economics (W ) and instructors (M). Suppose that there are at least two

instructors who consider all courses acceptable (|M⊗| ≥ 2). For each course, instructors are ranked

based on their ability to teach it. In this context, when there are as many instructors as courses

(|M | ≥ |W |) or instructors can be considered unsuitable to teach some of them (W⊗ = ∅), the
Theorem 2 guarantees that a stable mechanism exists that improves the welfare of the college in

relation to the instructor-optimal stable mechanism and remains strategy-proof for the teachers.
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Remark 1. To guarantee that |SM (Q)| > 1 it is necessary that at least two agents in M must be

unable to declare their potential partners as unacceptable. Indeed, within the preference domains

Q(M⊗,W⊗), it follows from Theorem 2 that a maximal domain in which Alcalde and Barberá’s

uniqueness result does not hold for M is characterized by |M⊗| = 2 and W⊗ = ∅. □

Assuming that |M | ≥ |W |, let Φ : Q(M⊗,W⊗) → M be the stable mechanism satisfying

Φ[≻] =

{
DAW [≻], when ≻ ∈ Q′,

DAM [≻], when ≻ /∈ Q′,

where Q′ are the preference profiles in which agents in W have different best potential partners.

The following result extends Proposition 2 to scenarios in which some agents may declare

potential partners inadmissible.

Theorem 3. When |M | ≥ |W | ≥ 3, Φ : Q(M⊗,W⊗) → M satisfies the following properties:

(i) Φ is strategy-proof for M if and only if M⊗ = M .

(ii) Φ is less manipulable by M -coalitions than DAM whenever M⊗ = M .

(iii) Like the mechanism DAM , Φ is not group strategy-proof for M .

When (M⊗,W⊗) = (M,W ), the stable mechanisms Φ and Ψ coincide. Hence, the result of

Theorem 3 implies that the preference domain P cannot be expanded to allow some agents in M to

have outside options without losing the one-sided strategy-proofness of Ψ.

Despite the simplicity and the good properties of Φ, there are stable mechanisms that Pareto

dominate it from the perspective of W and remain strategy-proof for M (see Theorem 4(iv)).

5. On W -optimal mechanisms in SM (Q)

In this section, we prove the existence of a stable mechanism that is optimal for all agents in W

among those in which agents in M do not have incentives to misrepresent preferences. Given a side

of the market H ∈ {M,W}, consider the partial order ⩾H defined over the family of mechanisms

Ω : Q → M, where Q ≡ Q(M⊗,W⊗), and characterized by

Ω1 ⩾H Ω2 ⇐⇒ Ω1[≻](h) ⪰h Ω2[≻](h), ∀h ∈ H, ∀ ≻∈ Q.

Hence, Ω1 ⩾H Ω2 if and only if, regardless of preferences in Q, all agents in H weakly prefer the

outcome of Ω1 to that of Ω2. As usual, Ω1 >H Ω2 indicates that Ω1 ⩾H Ω2 and Ω1 ̸= Ω2. Notice

that, Ω1 >H Ω2 if and only if Ω1 is Pareto-superior to Ω2 for agents in H.

A mechanism ΩW : Q → M is W -optimal in SM (Q) when it is the greatest element of SM (Q)

under the partial order ⩾W . That is, from the point of view of agents in W , the mechanism ΩW

is Pareto-superior to any other mechanism in SM (Q). Since agents in W compete with each other,

the existence of such a mechanism seems non-trivial.
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Theorem 4. In a two-sided one-to-one matching market between M and W , there always exists a

mechanism ΩW : Q → M that is W -optimal in SM (Q). Moreover, the following properties hold:

(i) Each agent in M \M⊗ has the same partner in all mechanisms in SM (Q).

(ii) When agents have no outside options, we have that:

• ΩW ̸= DAM if and only if |M | ≥ |W |.
• ΩW ̸= DAW if and only if |W | ≥ 3.

(iii) If |M | ≥ |W | ≥ 3, then ΩW ̸= DAW and ΩW ̸= DAM if and only if |M⊗| ≥ 2.

(iv) If min{|M |, |W |} ≥ 5 and |M⊗| ≥ 2, there are preference profiles ≻∈ Q such that

ΩW [≻] /∈ {DAM [≻],DAW [≻]}

as long as either W⊗ = ∅ or |M | ≥ |W |.

To prove the existence of a W -optimal mechanism in SM (Q), we will show that the set of stable

and one-side strategy-proof mechanisms is a lattice under the same binary operations for which

Knuth (1976) shows that the set of stable matchings has this property (see the Appendix).

Theorem 4(i) shows that agents without outside options are the only ones that can be negatively

affected when a mechanism Ω ∈ SM (Q) different from DAM is implemented.11 Theorem 4(ii)-(iii)

determines necessary and sufficient condition to ensure that the optimal mechanism ΩW does not

coincide with any version of deferred acceptance. In particular, when M is the long side of the

market and W has at least three agents, ΩW always differs from DAW and ΩW = DAM if and only

if at most one agent in M has no outside options. When |M⊗| ≥ 2 and each side of the market has

more than four members, Theorem 4(iv) determines sufficient conditions to ensure the existence of

preference profiles at which the optimal mechanism ΩW differs from both DAM and DAW .

Remark 2. In two-sided one-to-one matching markets, Roth (1982, Theorem 3) shows that no

stable mechanism is strategy-proof. Without outside options, this impossibility result holds if and

only if there are at least three agents on each side of the market.

Indeed, independently of the existence of outside options, the original proof of Roth’s theorem

guarantees that min{|M |, |W |} ≥ 3 is sufficient to ensure that stability and strategy-proofness are

incompatible. The necessity of min{|M |, |W |} ≥ 3 follows from Theorem 4(ii) and the fact that

DAH is strategy-proof for the agents in H. □

In markets without outside options, Kesten (2010, Proposition 1) and Kesten and Kurino (2019,

Corollary 3) show the existence of a mechanism that is strategy-proof for the long side of the

market and Pareto-dominate the long-sided optimal deferred acceptance mechanism. Our last

result uses Theorem 4(ii) to complement this property:

11The advantages of having an outside option can reach the point of inducing agents to always prefer a manipulable

mechanism over a strategy-proof one (see Akbarpour, Kapor, Neilson, Van Dijk, Zimmerman, 2022).
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Corollary. Assume that agents have no outside options and |M | > |W |. For each H ∈ {M,W}
there exists a mechanism Ω : P → M that is strategy-proof for M and satisfies Ω >H DAM .

6. Concluding remarks

In two-sided one-to-one matching markets, assuming that some agents may not misrepresent

preferences by declaring potential partners unacceptable, we have found necessary and sufficient

conditions to ensure the multiplicity of stable mechanisms that are strategy-proof for one side of the

market (see Theorems 1 and 2). We also characterized a stable mechanism that is strategy-proof

for the long side of the market and less manipulable by coalitions of its members than the

long-side optimal deferred acceptance mechanism (see Theorem 3). Furthermore, among the stable

mechanisms that are strategy-proof for one side of the market, we have shown that there is one

that is Pareto superior for the other side (see Theorem 4). In many situations, which we describe

in terms of the relative size of the sides of the market, this optimal mechanism does not coincide

with any version of deferred acceptance.

A natural extension of our results is to the context of matching markets with contracts, that is,

many-to-one matching markets between hospitals and doctors in which side payments are allowed.

Hatfield and Milgrom (2005) show that many of the mechanism design properties of one-to-one

matching markets remain valid in this context as long as doctors are substitutes and the law of

aggregate demand holds.12 Moreover, Sakai (2011) and Hirata and Kasuya (2017) show that Alcalde

and Barberà’s uniqueness result hold when agents may declare others unacceptable. Although this

is a topic for future research, our results should be easily adaptable to this more general framework.

Appendix: omitted proofs

The Theorems 1 and 2 will be a consequence of the following result:

Lemma 1. In a two-sided one-to-one matching market between M and W , we have that:

(i) If |M⊗| < 2, then DAM is the only mechanism in SM (Q).

(ii) If |M | < |W |, |M⊗| ≥ 2, and |W⊗| ≤ |M |, then |SM (Q)| > 1.

(iii) If |M | ≥ |W | and |M⊗| ≥ 2, then |SM (Q)| > 1.

(iv) If |M | < |W | and W⊗ = W , then DAM is the only mechanism in SM (Q).

Proof. (i) Suppose that M⊗ = {m}.13 By contradiction, assume that there is Ω : Q → M different

from DAM that is stable and strategy-proof for M . Let ≻∈ Q such that Ω[≻] ̸= DAM [≻]. Since

agents in M consider the matching DAM [≻] the best stable outcome in [M,W,≻], for each m ∈ M

we have DAM [≻](m) ≻m Ω[≻](m) or DAM [≻](m) = Ω[≻](m). If there exists m ̸= m such that

12Doctors are substitutes when any contract that is selected from a set of alternatives continues to be chosen

when some of those alternatives are no longer available. Hospital’s preferences satisfy the law of aggregate demand

whenever the number of contracts chosen does not decrease as the set of alternatives expands.
13When M⊗ = ∅, Alcalde and Barberà (1994, Theorem 3) guarantee that DAM is the only mechanism in SM (Q).
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DAM [≻](m) ≻m Ω[≻](m), then DAM [≻](m) ∈ W . Hence, m can manipulate the mechanism Ω by

reporting any preference ≻′
m such that DAM [≻](m) ≻′

m m ≻′
m · · · . Indeed, since DAM [≻] is stable in

[M,W, (≻′
m,≻−m)], it follows from the Rural Hospital Theorem that Ω[≻′

m,≻−m](m) = DAM [≻](m),

which implies that Ω[≻′
m,≻−m] ≻m Ω[≻](m). This contradicts the strategy-proofness of Ω. Therefore,

w ≡ DAM [≻](m) ≻m Ω[≻](m). Furthermore, as Ω[≻](m) = DAM [≻](m) for all m ̸= m, we have that

Ω[≻](w) = w.14 Therefore, (m,w) blocks the matching Ω[≻] under ≻. A contradiction.

(ii) We want to prove that |SM (Q)| > 1 whenever |M | < |W |, |M⊗| ≥ 2, and |W⊗| ≤ |M |.
Suppose that M = {m1, . . . ,mr} and W = {w1, . . . , ws}, where 2 ≤ r < s. Also, {m1,m2} ⊆ M⊗ and

W⊗ ⊆ {w1, . . . , wr}. Let ≻̃ ∈ Q be a preference profile that satisfies the following conditions:

(1) Given i ∈ {1, 2}, mi considers wi the best potential partner.

(2) Given i, j ∈ {1, 2} with i ̸= j, wi considers mj her best potential partner and mi admissible.

(3) For each i ∈ {3, . . . , r}, agents mi y wi consider each other the best alternative.

(4) Each agent w ∈ {wr+1, . . . , ws} considers m1 and m2 unacceptable.

It follows that the market [M,W, ≻̃] has only two stable matchings:

DAM [≻̃] = {(m1, w1), (m2, w2), (m3, w3), . . . , (mr, wr), wr+1, . . . , ws},

DAW [≻̃] = {(m1, w2), (m2, w1), (m3, w3), . . . , (mr, wr), wr+1, . . . , ws}.

Define M = M \ {m1,m2} and K =
{
≻∈ Q : (≻i)i∈M∪W = (≻̃i)i∈M∪W

}
. Let Ω : Q → M be the

mechanism such that

Ω[≻] =

{
DAW [≻], when ≻ ∈ K,

DAM [≻], when ≻ /∈ K.

The mechanism Ω is different from DAM , because Ω[≻̃] = DAW [≻̃] ̸= DAM [≻̃].

We claim that Ω is strategy-proof for M . By contradiction, suppose that there are m ∈ M and ≻,≻′∈ Q
such that Ω[≻′

m,≻−m](m) ≻m Ω[≻](m). In this context, there are two relevant cases:

- Suppose that ≻∈ K. Since each agent in M is matched with his best alternative in DAW [≻], it

follows that m ∈ {m1,m2}. Hence, (≻′
m,≻−m) ∈ K. This implies that (≻w)w∈W = (≻̃w)w∈W

and condition (4) ensures that the deferred acceptance algorithm DAW finishes with the pairs

that are formed at the first step when it is applied to either (≻′
m,≻−m) or ≻. We conclude that

Ω[≻′
m,≻−m] = DAW [≻′

m,≻−m] = DAW [≻] = Ω[≻]. A contradiction.

- Suppose that ≻ /∈ K. Since DAM is strategy-proof for M in the preference domain Q, we have

that (≻′
m,≻−m) ∈ K. Therefore, (≻w)w∈W = (≻̃w)w∈W and m = mi for some i ∈ {3, . . . , r},

which imply that wi = DAW [(≻′
m,≻−m)](m) = Ω[(≻′

m,≻−m)](m) ≻m Ω[≻](m) = DAM [(≻)](m).

Therefore, although wi considers m the best alternative under ≻wi , she rejects his proposal when

deferred acceptance is applied to ≻. A contradiction.

We conclude that there is more than one stable mechanisms defined in Q that is strategy-proof for M .

(iii) Let M = {m1, . . . ,mr}, W = {w1, . . . , ws}, and {m1,m2} ⊆ M⊗. Suppose that r ≥ s and consider a

preference profile ≻∗∈ P characterized by:

- Given i ∈ {1, 2}, mi considers wi the best potential partner.

- Given i, j ∈ {1, 2} with i ̸= j, wi considers mj her best potential partner.

- Given i ∈ {3, . . . , s}, agents mi and wi consider each other the best alternative.

14This argument also contradicts the Rural Hospital Theorem, because w = DAM [≻](m) is left alone in Ω[≻].
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- The agents m1, . . . ,ms are the top alternatives for each w ∈ W .

It follows that the two-sided market [M,W. ≻∗] has only two stable matchings:

DAM [≻∗] = {(m1, w1), (m2, w2), (m3, w3), . . . , (ms, ws),ms+1, . . . ,mr},

DAW [≻∗] = {(m1, w2), (m2, w1), (m3, w3), . . . , (ms, ws),ms+1, . . . ,mr}.

Let M = {m3, . . . ,ms} and K =
{
≻∈ P : (≻i)i∈M∪W = (≻∗

i )i∈M∪W

}
.

Consider the mechanism Ω : P → M defined by

Ω[≻] =

{
DAW [≻], when ≻ ∈ K,

DAM [≻], when ≻ /∈ K.

Since Ω[≻∗] = DAW [≻∗] ̸= DAM [≻∗], the stable mechanisms Ω and DAM are different. We claim that

Ω is strategy-proof for M . By contradiction, suppose that there exists m ∈ M and ≻,≻′∈ P such that

Ω[≻′
m,≻−m](m) ≻m Ω[≻](m). There are two relevant cases to analyze:

- Suppose that ≻∈ K. Since each agent in M is matched with his best alternative in DAW [≻], it

follows that m /∈ M . Hence, (≻′
m,≻−m) ∈ K. Moreover, as m1 and m2 have no outside options and

(≻w)w∈W = (≻∗
w)w∈W , DAW finishes with the pairs formed at the first step when it is applied to

either (≻′
m,≻−m) or ≻. Thus, Ω[≻′

m,≻−m] = DAW [≻′
m,≻−m] = DAW [≻] = Ω[≻], a contradiction.

- Suppose that ≻ /∈ K. Since the mechanism DAM is strategy-proof for M , (≻′
m,≻−m) ∈ K.

Therefore, (≻w)w∈W = (≻∗
w)w∈W and m = mi for some i ∈ {3, . . . , s}, which guarantee that

wi = DAW [(≻′
m,≻−m)](m) = Ω[(≻′

m,≻−m)](m) ≻m Ω[≻](m) = DAM [(≻)](m). It follows that,

although wi considers m the best alternative under ≻wi , she rejects his proposal when deferred

acceptance is applied to ≻. A contradiction.

(iv) The proof of Proposition 1 works to show this property (see footnote 10). □

The Theorem 1 is a direct consequence of properties (iii) and (iv) of Lemma 1, while Theorem 2 follows

from properties (i), (ii), and (iii) of Lemma 1.

Proof of Theorem 3. Asume that M = {m1, . . . ,mr} and W = {w1, . . . , ws}, with r ≥ s ≥ 3.

(i) Suppose that the mechanism Φ is strategy-proof for M . By contradiction, asume that m1 ∈ M \ M⊗.

Let ≻∈ Q′ be a preference profile satisfying:

≻m1 ≻m2 ≻m3 · · · ≻ms ≻ms+1 · · · ≻mr ≻w1 ≻w2 ≻w3 · · · ≻ws

w2 w1 w3 · · · ws w1 · · · w1 m1 m2 m3 · · · ms

w1 w2

...
...

...
...

...
... m2 m1

...
...

...

...
...

...
...

...
...

...
...

...
...

...
...

...

If ≻′
m1

is a preference relation in which the only acceptable partner is w2, then

Φ[≻′
m1

,≻−m1 ](m1) = w2 ≻m1 w1 = Φ[≻](m1),

which contradicts the strategy-proofness of Φ.

When M⊗ = M , the same arguments of the proof of Proposition 1 can be applied to show that Φ is

strategy-proof for M . In fact, since the absence of outside options for agents in W plays no role in this

proof, Φ coincides with the mechanism ΩF defined in the proof of Proposition 1 when we consider F = F∗

and PF is changed by Q′ ≡ {≻∈ Q(M⊗,W⊗) : ∃f ∈ F , bw(≻) = f(w), ∀w ∈ W}.
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(ii) The proof of Proposition 2 works to show this property (it is sufficient to change Ψ to Φ and P ′ to Q′).

(iii) For each C ⊆ M and≻, ≻̃ ∈ Q ≡ Q(M⊗,W⊗), we have that≻∈ Q\Q′ if and only if (≻̃C ,≻−C) ∈ Q\Q′.

As a consequence, to show that Φ is not group strategy-proof for M , it is sufficient to find a preference

profile in Q \ Q′ at which DAM is manipulable by a coalition in M .

Let ≻∗∈ Q \ Q′ be a preference profile satisfying

≻∗
m1

≻∗
m2

≻∗
m3

≻∗
m4

· · · ≻∗
ms

≻∗
ms+1

· · · ≻∗
mr

≻∗
w1

≻∗
w2

≻∗
w3

· · · ≻∗
ws−1

≻∗
ws

w2 w1 w1 w4 · · · ws w1 · · · w1 m1 m2 m3 · · · ms−1 m1

w1 w2 w3

...
...

...
...

...
... m3 m1

...
...

... ms

...
...

...
...

...
...

...
...

... m2

...
...

...
...

...

It follows that DAM [≻∗] = {(m1, w1), (m2, w2), (m3, w3), . . . , (ms, ws),ms+1, . . . ,mr}. Consider the

coalition C = {m1,m2,m3} and ≻̃∗ ∈ Q \ Q′ that coincides with ≻∗ except in the preference relation of

agent m3 which is characterized by w3 ≻̃∗
m3

w1≻̃∗
m3

· · · . Since the matching DAM [≻̃∗
C ,≻∗

−C ] is given by

{(m1, w2), (m2, w1), (m3, w3), . . . , (ms, ws),ms+1, . . . ,mr}, the coalition C manipulates DAM at ≻∗. We

conclude that Φ is not group strategy-proof for M . □

Proof of Theorem 4. Given Ω1,Ω2 ∈ SM (Q), let ∨ and ∧ be the binary operations such that, for each agent

m ∈ M and preference profile ≻∈ Q, we have that

Ω1 ∨ Ω2[≻](m) = max
≻m

{Ω1[≻](m), Ω2[≻](m)}, Ω1 ∧ Ω2[≻](m) = min
≻m

{Ω1[≻](m), Ω2[≻](m)},

where max
≻m

{w,w′} = w if and only if either w ≻m w′ or w = w′, and min
≻m

{w,w′} = w if and only if either

w′ ≻m w or w = w′. Since the stable matchings of [M,W,≻] form a lattice under the binary operations ∨
and ∧ (Knuth, 1976; Theorem 7, attributed to J. H. Conway), the mechanisms Ω1 ∨ Ω2 and Ω1 ∧ Ω2 are

well-defined and stable. We claim that Ω1 ∨ Ω2 and Ω1 ∧ Ω2 belong to SM (Q). Indeed, by contradiction,

suppose that there exist m ∈ M and ≻,≻′∈ Q such that Ω1 ∨ Ω2[≻′
m,≻−m](m) ≻m Ω1 ∨ Ω2[≻](m). It

follows from the definition of ∨ that Ω1 ∨ Ω2[≻′
m,≻−m](m) = Ωi[≻′

m,≻−m](m) for some i ∈ {1, 2}, which
implies that Ωi[≻′

m,≻−m](m) ≻m Ωi[≻](m). This contradicts the fact that Ωi ∈ SM (Q). Analogously, if

Ω1 ∧ Ω2[≻′
m,≻−m](m) ≻m Ω1 ∧ Ω2[≻](m), then Ω1 ∧ Ω2[≻](m) = Ωj [≻](m) for some j ∈ {1, 2}. Hence,

Ωj [≻′
m,≻−m](m) ≻m Ωj [≻](m), which contradicts the fact that Ωj ∈ SM (Q).

Therefore, (SM (Q),∨,∧) is a lattice. Notice that, Ω1 ⩾M Ω2 if and only if Ω1 = Ω1 ∨ Ω2. Since agents

from different sides of the market have opposed preferences for stable matchings (Knuth, 1976; Corollary 1),

it follows that Ω1 ⩾W Ω2 if and only if Ω2 ⩾M Ω1. This relationship implies that a mechanism is W -optimal

in SM (Q) if and only if it is the least element of SM (Q) under the partial order ⩾M . Since every finite

lattice has a least element, we conclude that there is ΩW : Q → M that is W -optimal in SM (Q).

(i) By contradiction, suppose that there exists m ∈ M \ M⊗ such that Ω[≻](m) ̸= DAM [≻](m) for some

preference profile ≻∈ Q and mechanism Ω ∈ SM (Q). Since DAM [≻] is the best stable matching of [M,W,≻]

for agents in M , w ≡ DAM [≻](m) ≻m Ω[≻](m). Let ≻′
m be a preference relation defined on W ∪ {m} such

that w ≻′
m m ≻′

m · · · (remember that m may declare others unacceptable). Since DAM [≻] is stable

under (≻′
m,≻−m) and w is the only acceptable partner of the agent m under ≻′

m, the Rural Hospital

Theorem implies that Ω(≻′
m,≻−m)(m) = w. Hence, Ω(≻′

m,≻−m)(m) ≻m Ω[≻](m), which contradicts the

strategy-proofness of Ω.
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(ii) Suppose that agents have no outside options (i.e., M⊗ = M and W⊗ = W ). In this case, the preference

domain Q ≡ Q(M⊗,W⊗) coincides with P.

• For any ≻∈ P, DAM [≻] is the best stable matching for agents in M . Hence, Ω >W DAM for all

Ω ∈ SM (P) \ {DAM}, which implies that ΩW ̸= DAM if and only if |SM (P)| > 1. Therefore, it

follows form Proposition 1 that ΩW ̸= DAM if and only if |M | ≥ |W |.
• We claim that no agent can manipulate the mechanism DAW : P → M when |W | = 2. Indeed,

Dubins and Freedman (1981, Theorem 9) and Roth (1982, Theorem 5) ensure that DAW is

strategy-proof for W . Moreover, given m ∈ M and ≻∈ P such that wi ≻m wj , we have that:

– If DAW [≻](m) = wi, then m has no incentives to manipulate DAW at ≻.

– If DAW [≻](m) = wj , then m does not receive a proposal from wi when DAW is implemented.

Moreover, DAW [≻′
m,≻−m](m) = DAW [≻](m) when ≻′

m is characterized by wj ≻′
m wi. Since

the mechanism designer knows that m does not have an outside option, he cannot improve

his situation by misrepresenting preferences.

– If DAW [≻](m) = m, then m does not receive any proposal when DAW is implemented. This

will remain the case regardless of the preferences that he decides to report. Therefore, m

cannot improve his situation by misrepresenting preferences.

Hence, DAW is stable and strategy-proof in the preference domain P when |W | = 2. Since DAW

implements the best stable matching for agents in W , it follows that ΩW = DAW when |W | = 2.

Equivalently, ΩW ̸= DAW implies that |W | > 2.

We claim that DAW is not strategy-proof for M when |W | > 2. Indeed, let ≻∈ P be a preference

profile such that, for some m1,m2 ∈ M and w1, w2, w3 ∈ W we have that:

w1 ≻m1 w2 ≻m1 w3 ≻m1 · · · , w2 ≻m2 w1 ≻m2 w3 ≻m2 · · · ,

m2 ≻w1 m1 ≻w1 · · · , m1 ≻w2 m2 ≻w2 · · · , m1 ≻w3 m2 ≻w3 · · · .

Then, DAW [≻](m1) = w2. However, when m1 reports preferences w1 ≻′
m1

w3 ≻′
m1

w2 ≻′
m1

· · · ,
we have that DAW [≻′

m1
,≻−m1 ](m1) = w1. Thus, DAW is not strategy-proof for M .

(iii) Suppose that |M | ≥ |W | ≥ 3. The proof of Theorem 3 in Roth (1982) ensures that SM (Q)∩SW (Q) = ∅.
Hence, ΩW differs from DAW . Since |M | ≥ |W |, it follows from properties (i) and (iii) of Lemma 1 that

ΩW differs from DAM if and only if M⊗ ≥ 2.

(iv) Suppose that M = {m1, . . . ,mr}, {m3,m4} ⊆ M⊗, and W = {w1, . . . , ws}, where min{r, s} ≥ 5.

Case I: |M | ≥ |W |.
Since r ≥ s ≥ 5, let ≻∗∈ Q ≡ Q(M⊗,W⊗) be any preference profile satisfying:

≻∗
m1

≻∗
m2

≻∗
m3

≻∗
m4

≻∗
m5

· · · ≻∗
ms

≻∗
w1

≻∗
w2

≻∗
w3

≻∗
w4

≻∗
w5

· · · ≻∗
ws

w2 w1 w4 w3 w5 · · · ws m1 m2 m3 m4 m1 · · · m1

w1 w2 w3 w4

...
...

... m2 m1 m4 m3 m5 · · · ms

...
...

...
...

...
...

...
...

...
...

...
...

...
...

We want to prove that ΩW [≻∗] /∈ {DAM [≻∗],DAW [≻∗]}.
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It is not difficult to verify that the market [M,W,≻∗] has four stable matchings:

DAM [≻∗] = {(m1, w2), (m2, w1), (m3, w4), (m4, w3), (m5, w5) . . . , (ms, ws),ms+1, . . . ,mr},

DAW [≻∗] = {(m1, w1), (m2, w2), (m3, w3), (m4, w4), (m5, w5) . . . , (ms, ws),ms+1, . . . ,mr},

µ = {(m1, w1), (m2, w2), (m3, w4), (m4, w3), (m5, w5) . . . , (ms, ws),ms+1, . . . ,mr},

η = {(m1, w2), (m2, w1), (m3, w3), (m4, w4), (m5, w5) . . . , (ms, ws),ms+1, . . . ,mr}.

Let M∗ = {m1,m2} ∪ {m5, . . . ,ms} and K∗ = {≻∈ Q : (≻i)i∈M∗∪W = (≻∗
i )i∈M∗∪W } .

Consider the mechanism Ω : Q → M characterized by

Ω[≻] =

{
η, when ≻ ∈ K∗,

DAM [≻], when ≻ /∈ K∗.

Since {m3,m4} ⊆ M⊗, for any ≻∈ K∗ the matching η is stable in [M,W,≻]. As a consequence, the

mechanism Ω is stable. We claim that Ω is strategy-proof for M . By contradiction, assume that there exists

m ∈ M and ≻,≻′∈ Q such that Ω[≻′
m,≻−m](m) ≻m Ω[≻](m). There are two relevant cases to analyze:

- Suppose that ≻∈ K∗. Since η pairs each agent in M∗ with his best alternative, m /∈ M∗. Hence,

(≻′
m,≻−m) ∈ K∗ and Ω[≻′

m,≻−m](m) = η(m) = Ω[≻](m). A contradiction.

- Suppose that ≻ /∈ K∗. Since DAM is strategy-proof for M in the preference domain Q, it follows

that (≻′
m,≻−m) ∈ K∗. Hence, η(m) ≻m DAM [≻](m). It follows from Gale and Sotomayor (1985,

Theorem 4) that η is unstable in [M,W, (≻′
m,≻−m)]. A contradiction.

The fact that Ω belongs to SM (Q) implies that ΩW [≻∗](w) ⪰∗
w Ω[≻∗](w) for all w ∈ W , which guarantees

that ΩW [≻∗] ∈ {DAW [≻∗], η}. However, if ΩW [≻∗] = DAW [≻∗], then m1 can manipulate ΩW . Indeed, if

≻m1 satisfies w2 ≻m1 w5 ≻m1 w1 ≻m1 · · · , then in any stable matching of [M,W, (≻m1 ,≻∗
−m1

)] the agent

m1 forms a pair with w2. Hence, ΩW [≻m1 ,≻∗
−m1

](m1) = w2 ≻∗
m1

w1 = ΩW [≻∗](m1), which contradicts

the strategy proofness of ΩW . Therefore, ΩW [≻∗] /∈ {DAM [≻∗],DAW [≻∗]}.

Case II: |M | < |W | and W⊗ = ∅.
Since s > r ≥ 5, let ≻◦∈ Q be any preference profile satisfying:

≻◦
m1

≻◦
m2

≻◦
m3

≻◦
m4

≻◦
m5

· · · ≻◦
mr

≻◦
w1

≻◦
w2

≻◦
w3

≻◦
w4

≻◦
w5

· · · ≻◦
wr

w2 w1 w4 w3 w5 · · · ws m1 m2 m3 m4 m1 · · · m1

w1 w2 w3 w4

...
...

... m2 m1 m4 m3 m5 · · · ms

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Moreover, assume that agents in {wr+1, . . . , ws} consider m3 and m4 inadmissible under ≻◦.

It is not difficult to verify that the stable matchings of [M,W,≻◦] are given by:

DAM [≻◦] = {(m1, w2), (m2, w1), (m3, w4), (m4, w3), (m5, w5) . . . , (mr, wr), wr+1, . . . , ws},

DAW [≻◦] = {(m1, w1), (m2, w2), (m3, w3), (m4, w4), (m5, w5) . . . , (mr, wr), wr+1, . . . , ws},

µ = {(m1, w1), (m2, w2), (m3, w4), (m4, w3), (m5, w5) . . . , (mr, wr), wr+1, . . . , ws},

η = {(m1, w2), (m2, w1), (m3, w3), (m4, w4), (m5, w5) . . . , (mr, wr), wr+1, . . . , ws}.

Let M◦ = {m1,m2} ∪ {m5, . . . ,mr} and K◦ = {≻∈ Q : (≻i)i∈M◦∪W = (≻∗
i )i∈M◦∪W } .

Consider the mechanism Ω : Q → M such that

Ω[≻] =

{
η, when ≻ ∈ K◦,

DAM [≻], when ≻ /∈ K◦.



STRATEGIC BEHAVIOR WITHOUT OUTSIDE OPTIONS 19

Since {m3,m4} ⊆ M⊗ are inadmissible for {wr+1, . . . , ws}, η is stable in [M,W,≻] for any ≻∈ K◦.

Hence, identical arguments to those made in the proof of Case I ensure that Ω ∈ SM (Q), which implies that

ΩW [≻◦] ∈ {DAW [≻◦], η}. Furthermore, the same ideas applied in the proof of Case I allow us to show that

agent m1 manipulates ΩW when ΩW [≻◦] = DAW [≻◦]. Therefore, ΩW [≻◦] /∈ {DAM [≻◦],DAW [≻◦]}. □
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